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Genome-wide association study identifies 74 loci
associated with educational attainment

A list of authors and their affiliations appears in the online version of the paper.

Educational attainment is strongly influenced by social and
other environmental factors, but genetic factors are estimated to
account for at least 20% of the variation across individuals'. Here
we report the results of a genome-wide association study (GWAS)
for educational attainment that extends our earlier discovery
sample’? of 101,069 individuals to 293,723 individuals, and a
replication study in an independent sample of 111,349 individuals
from the UK Biobank. We identify 74 genome-wide significant loci
associated with the number of years of schooling completed. Single-
nucleotide polymorphisms associated with educational attainment
are disproportionately found in genomic regions regulating gene
expression in the fetal brain. Candidate genes are preferentially
expressed in neural tissue, especially during the prenatal period, and
enriched for biological pathways involved in neural development.
Our findings demonstrate that, even for a behavioural phenotype
that is mostly environmentally determined, a well-powered GWAS
identifies replicable associated genetic variants that suggest
biologically relevant pathways. Because educational attainment
is measured in large numbers of individuals, it will continue
to be useful as a proxy phenotype in efforts to characterize the
genetic influences of related phenotypes, including cognition and
neuropsychiatric diseases.

Educational attainment is measured in all main analyses as the
number of years of schooling completed (EduYears, n=293,723,
mean = 14.3, s.d. = 3.6; Supplementary Information sections 1.1-1.2).
All GWAS were performed at the cohort level in samples restricted to
individuals of European descent whose educational attainment was
assessed at or above age 30. A uniform set of quality-control proce-
dures was applied to the cohort-level summary statistics. In our GWAS
meta-analysis of ~9.3 million SNPs from the 1000 Genomes Project,
we used sample-size weighting and applied a single round of genomic
control at the cohort level.

Our meta-analysis identified 74 approximately independent genome-
wide significant loci. For each locus, we define the ‘lead SNP’ as the SNP
in the genomic region that has the smallest P value (Supplementary
Information section 1.6.1). Figure 1 shows a Manhattan plot with
the lead SNPs highlighted. This includes the three SNPs that reached
genome-wide significance in the discovery stage of our previous GWAS
meta-analysis of educational attainment!. The quantile-quantile (Q-Q)
plot of the meta-analysis (Extended Data Fig. 1) exhibits inflation
(Agc=1.28), as expected under polygenicity’.

Extended Data Fig. 2 shows the estimated effect sizes of the lead
SNPs. The estimates range from 0.014 to 0.048 standard deviations
per allele (2.7 to 9.0 weeks of schooling), with incremental R* in the
range 0.01% to 0.035%.

To quantify the amount of population stratification in the GWAS
estimates that remains even after the stringent controls used by the
cohorts (Supplementary Information section 1.4), we used linkage-
disequilibrium (LD) score regression?. The regression results indi-
cate that ~8% of the observed inflation in the mean x? is due to bias
rather than polygenic signal (Extended Data Fig. 3a), suggesting that
stratification effects are small in magnitude. We also found evidence
for polygenic association signal in several within-family analyses,
although these are not powered for individual SNP association testing
(Supplementary Information section 2 and Extended Data Fig. 3b).

To further test the robustness of our findings, we examined the within-
sample and out-of-sample replicability of SNPs reaching genome-
wide significance (Supplementary Information sections 1.7-1.8). We
found that SNPs identified in the previous educational attainment
meta-analysis replicated in the new cohorts included here, and con-
versely, that SNPs reaching genome-wide significance in the new
cohorts replicated in the old cohorts. For the out-of-sample replica-
tion analyses of our 74 lead SNPs, we used the interim release of the
UK Biobank® (UKB) (n=111,349). As shown in Extended Data Fig. 4,
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Figure 1 | Manhattan plot for EduYears associations (n=293,723).
The x axis is chromosomal position, and the y axis is the significance on
a —logg scale (two-tailed test). The black dashed line shows the genome-
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wide significance level (5 x 10~%). The red crosses are the 74 approximately
independent genome-wide significant associations (lead SNPs). The black
dots labelled with rs numbers are the three SNPs identified in ref. 1.
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Figure 2 | Genetic correlations between EduYears and other traits. Results from bivariate LD score regressions’: estimates of genetic correlation with
brain volume, neuropsychiatric, behavioural, and anthropometric phenotypes using published GWAS summary statistics. The error bars show the 95%

confidence intervals (CI).

72 out of the 74 lead SNPs have a consistent sign (P=1.47 x 10~ %), 52
are significant at the 5% level (P=2.68 x 10~°"), and 7 reach genome-
wide significance in the UK Biobank data set (P=1.41 x 10~*?). For
comparison, the corresponding expected numbers, assuming each
SNP’s true effect size is its estimated effect adjusted for the winner’s
curse, are 71.4, 40.3, and 0.6. (Supplementary Information section
1.8.2). We also find out-of-sample replicability of our overall GWAS
results: the genetic correlation between EduYears in our meta-
analysis sample and in the UKB data is 0.95 (s.e. = 0.021; Supplementary
Table 1.14).

It is known that educational attainment, cognitive performance, and
many neuropsychiatric phenotypes are phenotypically correlated, and
several studies of twins find that the phenotypic correlations partly
reflect genetic overlap®® (Supplementary Information section 3.3.4).
Here we investigate genetic correlation using our GWAS results for
EduYears and published GWAS results for 14 other phenotypes, using
bivariate LD score regression’ (Supplementary Information section 3).
First, we estimated genetic correlations with EduYears. As shown in
Fig. 2, based on overall summary statistics for associated variants, we
find genetic covariance between increased educational attainment and
increased cognitive performance (P=9.9 x 10~*°), increased intra-
cranial volume (P=1.2 x 10~°), increased risk of bipolar disorder
(P=7x 10713), decreased risk of Alzheimer’s (P=4 x 10™%), and lower
neuroticism (P=2.8 x 10~%). We also found positive, statistically signif-
icant, but very small, genetic correlations with height (P=5.2 x 10~1%)
and risk of schizophrenia (P=3.2 x 107*).

Second, we examined whether our 74 lead SNPs are jointly associ-
ated with each phenotype (Extended Data Fig. 5 and Supplementary
Information section 3.3.1). We reject the null hypothesis of no enrich-
ment at P < 0.05 for 10 of the 14 phenotypes (all the exceptions are
subcortical brain structures).

Third, for each phenotype, we tested (in the published GWAS
results) each of our 74 lead SNPs (or its proxy) for association at a
significance threshold of 0.05/74. We found a total of 25 SNPs meet-
ing this threshold for any of these phenotypes, but only one reaching
genome-wide significance. While these results provide suggestive
evidence that some of these SNPs may be associated with other
phenotypes, further testing of these associations in independent
cohorts is required (Supplementary Tables 3.2-3.4, Extended Data
Fig. 6).

To consider potential biological pathways, we first tested whether
SNPs in particular regions of the genome are implicated by our GWAS
results. Unlike what has been found for other phenotypes, SNPs in
regions that are DNase I hypersensitive in the fetal brain are more likely
to be associated with EduYears by a factor of ~5 (95% confidence inter-
val 2.89-7.07; Extended Data Fig. 7). Moreover, the 15% of SNPs resid-
ing in regions associated with histones marked in the central nervous
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system (CNS) explain 44% of the heritable variation (Extended Data
Fig. 8a and Supplementary Table 4.4.2). This enrichment factor of
~3 for CNS (P=2.48 x 107'%) is greater than that of any of the other
nine tissue categories in this analysis.

Given that our findings disproportionately implicate SNPs in regions
regulating brain-specific gene expression, we examined whether genes
located near EduYears-associated SNPs show elevated expression in
neural tissue. We tested this hypothesis using data on mRNA tran-
script levels in the 37 adult tissues assayed by the Genotype-Tissue
Expression Project (GTEx)'. Remarkably, the 13 GTEx tissues that are
components of the CNS—and only those 13 tissues—show significantly
elevated expression levels of genes near EduYears-associated SNPs
(false discovery rate <0.05; Extended Data Fig. 8b and Supplementary
Table 4.5.2).

To investigate possible functions of the candidate genes from the
GWAS-implicated loci, we examined the extent of their overlap with
groups of genes (‘gene sets’) whose products are known or predicted to
participate in a common biological process'!. We found 283 gene sets
significantly enriched by the candidate genes identified in our GWAS
(false discovery rate <0.05; Supplementary Table 4.5.1). To facilitate
interpretation, we used a standard procedure!! to group the 283 gene
sets into ‘clusters’ defined by degree of gene overlap. The resulting 34
clusters, shown in Fig. 3, paint a coherent picture, with many clusters
corresponding to stages of neural development: the proliferation of
neural progenitor cells and their specialization (the cluster npBAF
complex), the migration of new neurons to the different layers of the
cortex (forebrain development, abnormal cerebral cortex morphology),
the projection of axons from neurons to their signalling targets (axono-
genesis, signalling by Robo receptor), the sprouting of dendrites and
their spines (dendrite, dendritic spine organization), and neuronal sig-
nalling and synaptic plasticity throughout the lifespan (voltage-gated
calcium channel complex, synapse part, synapse organization).

Many of our results implicate candidate genes and biological path-
ways that are active during distinct stages of prenatal brain devel-
opment. To directly examine how the expression levels of candidate
genes identified in our GWAS vary over the course of development,
we used gene expression data from the BrainSpan Developmental
Transcriptomelz. As shown in Extended Data Fig. 9, these candi-
date genes exhibit above-baseline expression in the brain throughout
life but especially higher expression levels in the brain during pre-
natal development (1.36 times higher prenatally than postnatally,
P=6.02x1079%).

A summary overview of some promising candidate genes for
follow-up work is provided in Table 1.

We constructed polygenic scores! to assess the joint predictive
power afforded by the GWAS results (Supplementary Information
section 5.2). Across our two holdout samples, the mean predictive
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Figure 3 | Overview of biological annotation. Thirty-four clusters of
significantly enriched gene sets. Each cluster is named after one of its
member gene sets. The colour represents the permutation P value of
the member set exhibiting the most statistically significant enrichment.
Overlap between pairs of clusters is represented by an edge. Edge width

power of a polygenic score constructed from all measured SNPs is
3.2% (P=1.18 x 107% Supplementary Table 5.2 and Supplementary
Information section 5).

Studies of genetic analyses of behavioural phenotypes have been
prone to misinterpretation, such as characterizing identified asso-
ciated variants as ‘genes for education’. Such characterization is not
correct for many reasons: educational attainment is primarily deter-
mined by environmental factors, the explanatory power of the indi-
vidual SNPs is small, the candidate genes may not be causal, and
the genetic associations with educational attainment are mediated
by multiple intermediate phenotypes'. To illustrate this last point,
we studied mediation of the association between the all-SNPs poly-
genic score and EduYears in two of our cohorts. We found that
cognitive performance can statistically account for 23-42% of the
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association (P < 0.001) and the personality trait ‘openness to experi-
ence’ for approximately 7% (P < 0.001; Supplementary Information
section 6).

It would also be a mistake to infer from our findings that the genetic
effects operate independently of environmental factors. Indeed, a
recent meta-analysis of twin studies found that genetic influences
on educational attainment are heterogeneous across countries and
birth cohorts!®. We conducted exploratory analyses in the Swedish
Twin Registry to illustrate how environmental factors may amplify or
dampen the impact of genetic influences (Supplementary Information
section 7). We found that the predictive power of the all-SNPs polygenic
score is heterogeneous by birth cohort, with smaller explanatory power
in younger cohorts (Extended Data Fig. 10; see also Supplementary
Information section 7.4 for discussion of the contrast between these

Table 1 | Selected candidate genes implicated by bioinformatics analyses

Gene SNP Syndromic  Score  Top-ranking gene sets

TBR1 rs4500960 ID, ASD 6 Developmental biology, decreased brain size, abnormal cerebral cortex morphology

MEF2C rs7277187 ID, ASD 5 ErbB signalling pathway, abnormal sternum ossification, regulation of muscle cell differentiation

ZSWIM6 rs61160187 - 5 Transcription factor binding, negative regulation of signal transduction, PI3K events in ErbB4 signalling

BCL11A rs2457660 ASD 5 Dendritic spine organization, abnormal hippocampal mossy fibre morphology, SWI/SNF-type complex

CELSR3 rs11712056 SCz 5 Dendrite morphogenesis, dendrite development, abnormal hippocampal mossy fibre morphology

MAPT rs192818565 ID 5 Dendrite morphogenesis, abnormal hippocampal mossy fibre morphology, abnormal axon guidance

SBNO1 rs7306755 SCz 5 Protein serine/threonine phosphatase complex

NBAS rs12987662 - 5 -

NBEA rs9544418 SCz 4 Developmental biology, signalling by Robo receptor, dendritic shaft

SMARCA2 rs1871109 ID 4 -

MAP4 rs11712056 ASD 4 Developmental biology, signalling by Robo receptor, SWI/SNF-type complex

LINCO0461  rs10061788 - 4 Decreased brain size, abnormal cerebral cortex morphology, abnormal hippocampal mossy fibre
morphology

POU3F2 rs9320913 - 4 Dendrite morphogenesis, developmental biology, decreased brain size

RAD54L2 rs11712056 SCz 4 Decreased brain size, SWI/SNF-type complex, nBAF complex

PLK2 rs2964197 - 4 Negative regulation of signal transduction, PI3K events in ErbB4 signalling

Fifteen candidate genes implicated most consistently across various analyses. To assemble this list, each gene in a DEPICT-defined locus (Supplementary Information section 4.5) was assigned a score
equal to the number of criteria it satisfies out of ten (see Supplementary Table 4.1 for details). The DEPICT prioritization P value was used as the tiebreaker. SNP, the SNP in the gene’s locus with the
lowest P value in the EduYears meta-analysis. Syndromic, which, if any, of three neuropsychiatric disorders have been linked to de novo mutations in the gene (Supplementary Information section 4.6).
Top-ranking gene sets, DEPICT reconstituted gene sets of which the gene is a top-20 member (Supplementary Table 4.5.1). The three most significant gene sets are shown if more than three are
available. ID, intellectual disability; ASD, autism spectrum disorder; SCZ, schizophrenia; ErbB, erythroblastosis oncogene B; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; SWI/SNF, SWitch/
sucrose non-fermentable; nBAF, neuronal BRG1- or HRBM-associated factors.
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results and findings from a seminal twin study that estimated educa-
tional attainment heritability by birth cohort!®).

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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Extended Data Figure 1 | Q-Q plot of the genome-wide association a uniform P value distribution. The observed Agc is 1.28. (As reported
meta-analysis of 64 EduYears results files (n =293,723). Observed in Supplementary Information section 1.5.4, the unweighted mean Agc
and expected P values are on a —log; scale (two-tailed). The grey is 1.02, the unweighted median is 1.01, and the range across cohorts is
region depicts the 95% confidence interval under the null hypothesis of 0.95-1.15.)
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Extended Data Figure 2 | The distribution of effect sizes of the 74 lead
SNPs. a, SNPs ordered by absolute value of the standardized effect of
one more copy of the education-increasing allele, with 95% confidence
intervals. b, SNPs ordered by R?. Effects on EduYears are benchmarked
against the top 74 genome-wide significant hits identified in the largest
GWAS conducted to date of height and body mass index (BMI), and the

48 associations reported for waist-to-hip ratio adjusted for BMI (WHR).
These results are based on the GIANT consortium’s publicly available
results for pooled analyses restricted to European-ancestry individuals:
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT _
consortium.
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4 LD Score regression with the GWAS summary statistics
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Extended Data Figure 3 | Assessing the extent to which population
stratification affects the estimates from the GWAS. a, LD score
regression plot with the summary statistics from the GWAS. Each point
represents an LD score quantile for a chromosome (the x and y coordinates
of the point are the mean LD score and the mean ? statistic of variants

in that quantile). That the intercept is close to 1 and that the x statistics
increase linearly with the LD scores suggest that the bulk of the inflation
in the x statistics is due to true polygenic signal and not to population
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b Estimates from individual-level and within-family
regressions of EduYears on polygenic scores
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stratification. b, Estimates and 95% confidence intervals from individual-
level and within-family regressions of EduYears on polygenic scores, for
scores constructed with sets of SNPs meeting different P value thresholds.
In addition to the analyses shown here, we conduct a sign concordance
test, and we decompose the variance of the polygenic score. Overall, these
analyses suggest that population stratification is unlikely to be a major
concern for our 74 lead SNPs. See Supplementary Information section 3
for additional details.
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in the meta-analysis sample. SNPs are in descending order of R in the

Extended Data Figure 4 | Replication of 74 lead SNPs in the UK

meta-analysis sample. Of the 74 lead SNPs, 72 have the anticipated sign
in the replication sample, 52 replicate at the 0.05 significance level, and

7 replicate at the 5 x 1078 significance level.

Biobank data. Estimated effect sizes (in years of schooling) and 95%

confidence intervals of the 74 lead SNPs in the meta-analysis sample

(n=293,723) and the UK Biobank replication sample (n = 111,349).

The reference allele is the allele associated with higher values of EduYears
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Extended Data Figure 6 | Regional association plots for four of

the ten prioritized SNPs for mental health, brain anatomy, and
anthropometric phenotypes identified using EduYears as a proxy
phenotype. a, Cognitive performance; b, hippocampus; ¢, intracranial
volume; d, neuroticism. The four were selected because very few
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Extended Data Figure 7 | Application of fgwas to EduYears.

See Supplementary Information section 4.2 for further details. a, The
results of single-annotation models. ‘Enrichment’ refers to the factor
by which the prior odds of association at an LD-defined region must be
multiplied if the region bears the given annotation; this factor is estimated
using an empirical Bayes method applied to all SNPs in the GWAS
meta-analysis regardless of statistical significance. Annotations were
derived from ENCODE and a number of other data sources. Plotted
are the base 2 logarithms of the enrichments and their 95% confidence
intervals. Multiple instances of the same annotation correspond to
independent replicates of the same experiment. b, The results of
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combining multiple annotations and applying model selection and cross-
validation. Although the maximum-likelihood estimates are plotted,
model selection was performed with penalized likelihood. ¢, Reweighting
of GWAS loci. Each point represents an LD-defined region of the genome,
and shown are the regional posterior probabilities of association (PPAs).
The x axis gives the PPA calculated from the GWAS summary statistics
alone, whereas the y axis gives the PPA upon reweighting on the basis of
the annotations in b. The orange points represent genomic regions where
the PPA is equivalent to the standard GWAS significance threshold only
upon reweighting.
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Extended Data Figure 8 | Tissue-level biological annotation. a, The
enrichment factor for a given tissue type is the ratio of variance explained
by SNPs in that group to the overall fraction of SNPs in that group.

To benchmark the estimates for EduYears, we compare the enrichment
factors to those obtained when we use the largest GWAS conducted to date
on BMI, height, and waist-to-hip ratio adjusted for BMI. The estimates
were produced with the LDSC Python software, using the LD scores and
functional annotations introduced in ref. 17 and the HapMap3 SNPs with
minor allele frequency >0.05. Each of the ten enrichment calculations for
a particular cell type is performed independently, while each controlling
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Tissues

for the 52 functional annotation categories in the full baseline model. The
error bars show the 95% confidence intervals. b, We took measurements of
gene expression by the Genotype-Tissue Expression (GTEx) Consortium
and determined whether the genes overlapping EduYears-associated

loci are significantly overexpressed (relative to genes in random sets of
loci matched by gene density) in each of 37 tissue types. These types are
grouped in the panel by organ. The dark bars correspond to tissues where
there is significant overexpression. The y axis is the significance

on a —logy scale.

© 2016 Macmillan Publishers Limited. All rights reserved



LETTER

1
a_ | b
T ]
¥ Intellectual |7
E disability !
€3
> ) I
8?‘ Autism spectrum |-
< ! disorder | m—
c |
k] 1
g 21 1 I
g oriti i ja |-
S | = Prioritized genes Schizophrenia |
c | — Prioritized genes |
s, 1 by brain area -
2 i | = Allgenes Abnormal skeletal |
« growth | I
g I I’—\
| = ' T T T T T 1
° 1 ] 0 2 4 6 8 10
< 2 (@@ 0«&{& &.@\ 00\(@ 00 0\\ 0 o\\ o e, & P Odds ratio of association between phenotype's associated genes and syndromic genes
S et \VQ\ & \\%“{\0 ‘&\\ 6\‘\: ‘\‘\z °:¢\>\‘“ W EduYears ol BMI  mmmm Height WHR
% (,} *:@&*6\ @ \;b <\ & NGRS
c EduYears Schizophrenia
DEPICT FDR<0.05

Intellectual disability

Extended Data Figure 9 | Gene-level biological annotation. a, The
DEPICT-prioritized genes for EduYears measured in the BrainSpan
Developmental Transcriptome data (red curve) are more strongly
expressed in the brain prenatally rather than postnatally. The DEPICT-
prioritized genes exhibit similar gene expression levels across different
brain regions (grey lines). Analyses were based on log,-transformed
RNA-seq data. Error bars represent 95% confidence intervals. b, For
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RAD54L2
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Autism spectrum disorder

each phenotype and disorder, we calculated the overlap between the
phenotype’s DEPICT-prioritized genes and genes believed to harbour

de novo mutations causing the disorder. The bars correspond to odds
ratios. ¢, DEPICT-prioritized genes in EduYears-associated loci exhibit
substantial overlap with genes previously reported to harbour sites where
mutations increase risk of intellectual disability and autism spectrum
disorder (Supplementary Table 4.6.1).
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Extended Data Figure 10 | The predictive power of a polygenic score
(PGS) varies in Sweden by birth cohort. Five-year rolling regressions
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axis). The shaded area displays the 95% confidence intervals for the

PGS effect.
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